Volterra operators between limits of Bergman-type weighted spaces of analytic functions

نویسندگان

چکیده

We characterize continuity and compactness of the Volterra integral operator $T_g$ with non-constant analytic symbol $g$ between certain weighted Fréchet or (LB)-spaces functions on open unit disc, which arise as projective (resp. inductive) limits intersections unions) Bergman spaces order $1<p<\infty$ induced by standard radial weight $(1-|z|^2)^\alpha$ for $0<\alpha<\infty$. Motivated from earlier results obtained weight, we also establish several concerning spectrum operators acting space $A^p_{\alpha+}$, (LB)-space $A^p_{\alpha-}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Composition Operators between Bergman-type Spaces

In this paper, we characterize the boundedness and compactness of weighted composition operators ψCφf = ψfoφ acting between Bergman-type spaces.

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Volterra Composition Operators between Weighted Bergman-nevanlinna and Bloch-type Spaces

Let g and φ be holomorphic maps on D such that φ(D) ⊂ D. Define Volterra composition operators Jg,φ and Ig,φ induced by g and φ as Jg,φf(z) = Z z 0 (f ◦ φ) (ζ) (g ◦ φ)′ (ζ) dζ and Ig,φf(z) = Z z 0 (f ◦ φ)′ (ζ) (g ◦ φ) (ζ) dζ for z ∈ D and f ∈ H(D), the space of holomorphic functions on D. In this paper, we characterize boundedness and compactness of these operators acting between weighted Bergm...

متن کامل

composition operators acting on weighted hilbert spaces of analytic functions

in this paper, we considered composition operators on weighted hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a hilbert-schmidt characterization and characterizes the membership in schatten-class for these operators. also, closed range composition operators  are investigated.

متن کامل

Composition Operators between Weighted Banach Spaces of Analytic Functions

We characterize those analytic self-maps <p of the unit disc which generate bounded or compact composition operators Cv between given weighted Banach spaces H£° or H® of analytic functions with the weighted sup-norms. We characterize also those composition operators which are bounded or compact with respect to all reasonable weights v. 1991 Mathematics subject classification (Amer. Math. Soc): ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe journal of mathematics and statistics

سال: 2021

ISSN: ['1303-5010']

DOI: https://doi.org/10.15672/hujms.777911